Tight Gaussian 4-Designs
نویسندگان
چکیده
منابع مشابه
Tight Gaussian 4-Designs
A Gaussian t-design is defined as a finite set X in the Euclidean space Rn satisfying the condition: 1 V (Rn ) ∫ Rn f (x)e −α2||x ||2 dx = u∈X ω(u) f (u) for any polynomial f (x) in n variables of degree at most t , here α is a constant real number and ω is a positive weight function on X . It is easy to see that if X is a Gaussian 2e-design in Rn , then |X | ≥ (n+e e ) . We call X a tight Gaus...
متن کاملOn Tight Spherical Designs
Let X be a tight t-design of dimension n for one of the open cases t = 5 or t = 7. An investigation of the lattice generated by X using arithmetic theory of quadratic forms allows to exclude infinitely many values for n.
متن کامل7 on Tight Projective Designs
It is shown that among all tight designs in FP n = RP 1 , where F is R or C, or H (quaternions), only 5-designs in CP 1 [14] have irrational angle set. This is the only case of equal ranks of the first and the last irreducible idempotent in the corresponding Bose-Mesner algebra.
متن کاملGaussian polarizable-ion tight binding.
To interpret ultrafast dynamics experiments on large molecules, computer simulation is required due to the complex response to the laser field. We present a method capable of efficiently computing the static electronic response of large systems to external electric fields. This is achieved by extending the density-functional tight binding method to include larger basis sets and by multipole exp...
متن کاملThe Nonexistence of Certain Tight Spherical Designs
In this paper, the nonexistence of tight spherical designs is shown in some cases left open to date. Tight spherical 5-designs may exist in dimension n = (2m + 1)2 − 2, and the existence is known only for m = 1, 2. In the paper, the existence is ruled out under a certain arithmetic condition on the integer m, satisfied by infinitely many values of m, including m = 4. Also, nonexistence is shown...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebraic Combinatorics
سال: 2005
ISSN: 0925-9899,1572-9192
DOI: 10.1007/s10801-005-2505-3